
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REVIEW ARTICLE
published: 15 April 2014

doi: 10.3389/fendo.2014.00054

Endocannabinoids are involved in male vertebrate
reproduction: regulatory mechanisms at central and
gonadal level
Patrizia Bovolin1,2*, Erika Cottone1,Valentina Pomatto1, Silvia Fasano3, Riccardo Pierantoni 3,
Gilda Cobellis3† and Rosaria Meccariello4†

1 Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
2 Neuroscience Institute of Turin, University of Turin, Turin, Italy
3 Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Naples, Italy
4 Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, Naples, Italy

Edited by:
Yong Zhu, East Carolina University,
USA

Reviewed by:
Paola Piomboni, University of Siena,
Italy
Paola Grimaldi, University of Rome Tor
Vergata, Italy

*Correspondence:
Patrizia Bovolin, Department of Life
Sciences and Systems Biology,
University of Turin, via Accademia
Albertina 13, 10123 Turin, Italy
e-mail: patrizia.bovolin@unito.it
†Gilda Cobellis and Rosaria
Meccariello have contributed equally
to this work.

Endocannabinoids (eCBs) are natural lipids regulating a large array of physiological func-
tions and behaviors in vertebrates. The eCB system is highly conserved in evolution
and comprises several specific receptors (type-1 and type-2 cannabinoid receptors), their
endogenous ligands (e.g., anandamide and 2-arachidonoylglycerol), and a number of biosyn-
thetic and degradative enzymes. In the last few years, eCBs have been described as critical
signals in the control of male and female reproduction at multiple levels: centrally, by tar-
geting hypothalamic gonadotropin-releasing-hormone-secreting neurons and pituitary, and
locally, with direct effects on the gonads. These functions are supported by the extensive
localization of cannabinoid receptors and eCB metabolic enzymes at different levels of
the hypothalamic–pituitary–gonadal axis in mammals, as well as bonyfish and amphibians.
In vivo and in vitro studies indicate that eCBs centrally regulate gonadal functions by mod-
ulating the gonadotropin-releasing hormone–gonadotropin–steroid network through direct
and indirect mechanisms. Several proofs of local eCB regulation have been found in the
testis and male genital tracts, since eCBs control Sertoli and Leydig cells activity, germ
cell progression, as well as the acquisition of sperm functions. A comparative approach
usually is a key step in the study of physiological events leading to the building of a general
model.Thus, in this review, we summarize the action of eCBs at different levels of the male
reproductive axis, with special emphasis, where appropriate, on data from non-mammalian
vertebrates.

Keywords: GnRH, hypothalamus, pituitary, spermatogenesis, chromatin remodeling, male fertility

INTRODUCTION
Since the discovery of ∆9-tetrahydrocannabinol (THC) as the
main psychoactive ingredient in marijuana, the subsequent
cloning of cannabinoid receptors and the identification of their
endogenous ligands [i.e., endocannabinoids (eCBs)], our under-
standing of the functions of the eCB system (ECS) has evolved
considerably. It has become evident that most components of the
mammalian ECS are highly conserved in evolution, pointing to
a fundamental modulatory role in basic cellular and organismic
functions (1, 2). Accordingly, the ECS is widely expressed in ver-
tebrates, central and peripheral organs, and regulates a large array
of physiological functions and behaviors.

The basic eCB signaling system consists of (1) at least two
G-protein-coupled receptors, known as the cannabinoid type-1
and type-2 receptors (CB1 and CB2); (2) the endogenous lig-
ands, of which anandamide (AEA) and 2-arachidonoylglycerol
(2-AG) are the best characterized; and (3) synthetic and degrada-
tive enzymes and transporters that regulate eCB levels and action
at receptors. CB1 receptors are abundant in the whole vertebrate
central nervous system (CNS) and some peripheral tissues (3–5),

whereas CB2 receptors are mostly expressed in peripheral tissues
and immune cells, but they have recently been found also in the
CNS (6–8). Research in mammals has provided evidence that eCBs
can also bind to and activate type-1 transient receptor potential
vanilloid (TRPV1) channels (9).

An enormous amount of information on the general properties
of the ECS has accumulated over the last two decades [for general
reviews on the ECS, see Ref. (10–14)]. In the past years, growing
evidence has been accumulating to show the central role of the
ECS in controlling vertebrate reproductive functions at both cen-
tral and gonadal level (15). This review will summarize the action
of eCBs at different levels of the reproductive axis, including data
from non-mammalian vertebrates.

EFFECTS OF eCBs ON HYPOTHALAMIC–PITUITARY CONTROL
OF REPRODUCTION
Reproductive functions are under neuroendocrine control and
require a tight crosstalk between the hypothalamus, pituitary, and
gonads. Gonadotropin-releasing-hormone (GnRH) is a key mol-
ecule in reproductive behavior and physiology. This neuropeptide
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is synthesized by hypothalamic neurons mostly located, in mam-
mals, in the preoptic area and in the arcuate nucleus. GnRH axons
project to the median eminence, where pulsatile release of GnRH
into the hypophysial portal circulation drives the synthesis and
secretion of follicle-stimulating hormone (FSH) and luteinizing
hormone (LH) from anterior pituitary gonadotropic cells. Cir-
culating FSH and LH, in turn, stimulate gametogenesis and the
synthesis and secretion of the gonadal steroid hormones, andro-
gens, estrogens, and progesterone. Under various physiological
and pathological conditions, hormonal and metabolic signals reg-
ulate GnRH neurons both directly or through upstream neuronal
circuitries to influence the pattern of GnRH secretion. The emerg-
ing picture from studies in different vertebrate models is that eCBs
can modulate both GnRH and gonadotropic cell function, in other
words that eCBs can influence the regulation of reproduction at
both hypothalamic and pituitary levels (16, 17).

There is general agreement on the inhibitory effect exerted by
cannabinoids and eCBs on GnRH release. Early studies in rats
demonstrated that the ECS influence gonadal androgens via effects
on the hypothalamus and the anterior pituitary. THC, as well as
eCBs, lowers not only circulating testosterone levels but also the
levels of LH and FSH (18). Most of this negative effect appears to
be exerted by inhibition of GnRH secretion into median eminence
blood portal vessels (19, 20). Serum LH decreases in response
to AEA administration in wild-type mice, whereas CB1 knock-
out mice (Cb1−/−) are unresponsive to the treatment (21) and
show low levels of GnRH and FSH-beta mRNA at hypothalamic
and pituitary levels (22), demonstrating the pivotal role exerted
by CB1 in the regulation of GnRH and godanotropins synthesis
and/or release.

The above effects require CB1 expression in ventro-medial
telencephalic and hypothalamic regions. Early localization stud-
ies in rodents detected a low abundance of CB1-immunoreactive
axons (23) and a low expression level of CB1 mRNA (24–26) in
the rodent hypothalamus. However, more recent immunocyto-
chemical studies (27) revealed a dense CB1-immunoreactive fiber
network in the mouse hypothalamus. These data are consistent
with studies in teleosts and amphibians, showing the expression of
CB1-immunoreactive fibers and cell bodies in several hypothala-
mic regions of adult teleosts (Carassius auratus and Pelvicachromis
pulcher) and anuran amphibians (Xenopus laevis and Rana escu-
lenta) (4, 5, 28, 29), as well as in zebrafish and in embryos of X.
laevis (30, 31). The expression of CB1 appears to be regulated
in the diencephalon during the annual sexual cycle in anuran
amphibians (32). Interestingly, CB1 fluctuations show an oppo-
site trend compared to GnRH-I mRNA variations, suggesting that
maximal GnRH release corresponds to minimal CB1 levels in the
diencephalon. Both GnRH-I and GnRH-II expressions are inhib-
ited in the frog diencephlaon by AEA administration, indicating
that both molecular forms might be involved in the regulation of
gonatropin discharge (33). Only few data so far indicate that CB2
and TRPV1 receptors might have a role in GnRH cell regulation.
Profiling neurotransmitter receptor expression in mouse GnRH-
secreting neurons revealed CB2 expression in diestrous adult
females (34), and CB1/TRPV1 co-localization has been reported
in mouse hypothalamic paraventricular nucleus (35).

An important question is whether eCBs exert their effect
directly on GnRH neurons, or on neighboring cells that control
GnRH release. Gammon et al. (36) demonstrated that immortal-
ized GnRH neurons (GT1 cells) are both a source and target of
eCBs; they produce and secrete 2-AG and AEA, are able to take
up and degrade eCBs, and possess CB1 and CB2, whose activation
leads to the inhibition of pulsatile GnRH release. Nevertheless,
such observations have not been confirmed in vivo in mammals,
although GnRH-secreting neurons are close to cannabinergic
fibers in male mice (37) and few hypothalamic GnRH neurons
seem to express CB1 receptors (36). Close proximity between CB1-
expressing fibers and GnRH cells has been well documented in
non-mammalian vertebrates. In P. pulcher, C. auratus, Solea solea,
and Danio rerio, CB1-containing cell bodies and terminals codis-
tribute with GnRHIII (also called salmon GnRH) cell bodies and
fibers (38–40). Similarly, codistribution of CB1- and GnRH-I-
immunoreactivity has been found in corresponding brain regions
of X. laevis and R. esculenta (39, 41). Noteworthy, a subset of
frog GnRH-I-immunoreactive neurons in the septum and preop-
tic area are also CB1 immunopositive (28), suggesting the existence
of a CB1-mediated autocrine mechanism in the control of GnRH
secretion, in addition to presynaptic mechanisms. Ultrastructural
studies in mammals indicate that CB1-immunoreactive terminals
establish symmetric as well as asymmetric synapses on GnRH neu-
rons, suggesting that retrograde eCB signaling might influence
GABAergic and glutamatergic synaptic transmission, respectively
(27). It should be noted that most recent studies examining the
effects of endogenous GABA release on GnRH neurons indicate
that the predominant action is that of excitation (42). In line
with this, Farkas et al. (37) provided electrophysiological and
morphological evidence that retrograde eCB signaling reduces
GABAergic excitatory drive onto GnRH neurons via activation of
presynaptic CB1 receptors, and that the reduced GABAA receptor
signaling in turn inhibits GnRH neuron firing activity. Besides the
major afferent regulation exerted on GnRH neurons by GABAer-
gic and glutamatergic inputs, available neuroanatomical literature
describes afferent inputs by peptidergic and monoaminergic neu-
ronal systems (43). However, whether the ECS interacts also with
these systems has not been determined yet.

Besides the effect on GnRH cells, eCBs could also modulate
the activity of other hypothalamic cell types involved in repro-
duction. Cells containing aromatase, the enzyme that catalyzes the
transformation of androgen into estrogens, are localized in the
hypothalamus and are deeply involved in sexual differentiation of
the brain and activation of male sexual behavior. Aromatase and
CB1 are expressed in close contiguity in the goldfish preoptic area
and periventricular gray of hypothalamic inferior lobes (16), sug-
gesting a possible CB1-mediated regulation of aromatase activity,
at least in bony fish.

Several lines of evidence indicate that eCBs may control ade-
nohypophyseal hormone secretion also acting directly at pituitary
level. Both AEA and 2-AG have been detected in the anterior pitu-
itary, suggesting local synthesis (44). In addition, CB1 has been
localized in the anterior pituitary within the gonadotroph and lac-
totroph cells in adult male rats (45, 46), in humans (47), and in
X. laevis (48). CB1 expression in pituitary depends on steroids,
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since it is reduced in both orchidectomized male and estradiol-
replaced OVX female rats (46). Recently, the presence of ECS has
been demonstrated in mammalian pars tuberalis (49). This find-
ing might be functionally significant also for GnRH release, since
this pituitary region is a key station for the anterograde signaling
toward the pars distalis.

EFFECTS OF eCBs AT GONADAL LEVEL
Beside the role exerted at hypothalamic level to control reproduc-
tive activity in both sexes, the discovery of eCBs in gonads and
reproductive fluids – from seminal plasma in males to oviductal
fluid and milk in females – (50–52) pointed out the importance
of eCB signaling in the gonads. Gonads have the ability to syn-
thesize eCBs which in turn exert differential effects activating
both different types of receptors or tissue-/cell-specific recep-
tor subtypes, the latter obtained by both alternative splicing or
transcription sites (53–55). The content of eCBs is regulated by
biosynthetic/hydrolyzing enzyme balance, and the appropriate
“eCBs tone” in loco, is critical for spermatogenesis progression in
male and follicle maturation in female, for sperm quality and the
acquisition of sperm functions related to fertilization (motility and
capacitation), for fertilization, early-embryo migration, implanta-
tion and placentation, for parturition onset and labor as well (15,
17, 56–63). Focusing on males, evidence of eCB direct action into
the testis has been provided in most vertebrates [fish (8, 64), frogs
(32, 57, 65–68), mammals (21, 69–74)), whereas an ECS has also
been described in spermatozoa (SPZ) collected from sea urchin
(75), amphibians (65), rodents (76–79), bull (80), boar (81), and
human (82–85). A specific and significant association between
the use of marijuana and the occurrence of non-seminomatous
and mixed testicular germ cell tumors (TGCT) has been recently
reported in humans (86–88); although a deep characterization of
ECS has never been provided in TGCT patients yet, these data may
suggest that the recreational and therapeutic use of cannabinoids
may represent a risk factor for TGCT. In general, a relationship
between the expression of cannabinoid receptors and the outcome
of sex-steroid-dependent cancer has been documented, thus the
imbalance in the ECS and its interaction with sex-steroid hormone
homeostasis may promote cancer development, proliferation, and
migration [for recent review, see Ref. (89)]. Defects in eCB sig-
naling or eCB tone have recently been reported in rat treated with
HU210 – a synthetic analog of THC – (90) as well as in clinical cases
of male infertility in humans (85, 91). Consistently, genetic inac-
tivation of the AEA-hydrolyzing enzyme, Faah (Fatty acid amide
hydrolase) results in increased levels of AEA in the male repro-
ductive system that negatively affect sperm motility and impair
sperm fertilizing ability (92), whereas defects in the acquisition of
sperm motility during the epididymal transit have been reported in
Cb1−/− mice (76, 77). Thus, ECS is nowadays considered a poten-
tial therapeutic target in male infertility. ECS is widely expressed in
testis in both germ and somatic cells, and a map of ECS localization
in several species is provided in Table 1. The first intratesticular
targets of eCBs to be identified were the Leydig cells (21, 93),
consistent with the low basal testosterone production observed in
both Cb1−/− mice and AEA-treated controls, providing evidence
of mechanisms other than the AEA/THC-dependent downregula-
tion exerted at hypothalamic/pituitary levels. The direct effect of

Bhang (cannabis) on 3β-HSD, a well-known marker of Leydig cell
activity, also confirmed this issue (79). The involvement of CB1
signaling in the control of Leydig cell activity is not restricted to
steroid (both testosterone/estradiol) production (21, 22, 93), but
also extends to Leydig cells ontogenesis. In fact, as reported by
Cacciola et al. (72), CB1 expression in differentiating adult Leydig
cells negatively correlates with cell division and the characteriza-
tion of Cb1−/− mice phenotype revealed a 30% decrease in Leydig
cells number (72), as well as low circulating estradiol level (22)
[for recent review, see Ref. (94)].

In the germinal compartment, AEA reduces the spermatogenic
output inducing the apoptosis of Sertoli cells (70) in a mecha-
nism reversed by FSH-dependent activation of aromatase and by
estradiol-dependent upregulation of Faah (71). Recent studies car-
ried out by Grimaldi et al. (95) demonstrated that in mature Sertoli
cells Faah gene is a direct target of estradiol whose promoter con-
tains two proximal estrogen-responsive element (ERE) sequences
named ERE2/3. In vivo, a mechanism involving the binding of ERβ

to ERE 2/3 and the epigenetic modifications of Faah gene proximal
promoter (demethylation of both DNA at CpG site and histone
H3 at lysine 9) has been demonstrated (95); consistently FAAH
silencing abolished estrogen protection against AEA-dependent
apoptosis (95). Thus, AEA content finely toned by its hydrolyzing
enzyme FAAH is a fundamental tool to prevent the apoptosis in
Sertoli cells.

Beside the activity exerted on Sertoli cells, eCBs are criti-
cal for the progression of spermatogenesis from mitotic stages
throughout the meiotic stages and spermiogenesis events. In such
a context, the FAAH-dependent modulation of eCB tone and the
cell-specific expression of CB1, CB2, and TRVP1 provide evidence
of multiple, differential eCB-dependent signaling involved in the
spermatogenetic events. In mouse, decreasing levels of 2-AG have
been detected from spermatogonia (SPG) to spermatocytes (SPC)
and spermatids (SPT), suggesting that 2-AG, through CB2 – the
receptor highly expressed just in mitotic and meiotic stages, but
retained in residual body during the spermiogenesis – may act as an
autocrine/paracrine mediator during spermatogenesis (73). Con-
versely, the high expression of Trpv1 observed in meiotic stages
(73) and the massive germ cell depletion detected in Trpv1 null
mice (96) candidate TRPV1 as a controller of meiotic stages.
Very recently, the involvement of both CB1 and TRPV1 in the
opposite modulation of testicular GnRH signaling (15, 68, 97) –
a master system involved in the control of both spermatogenesis
progression and steroidogenetic activity – has been reported in the
anuran amphibian, the frog R. esculenta (97), a seasonal breeder
in which two GnRH molecular forms (GnRH-I and GnRH-II)
and three GnRH receptors (GnRH-RI, -RII and -RIII) have been
characterized in testis (68). In such a context, AEA might act as
an autocrine/paracrine factor via CB1 and as an intracrine signal
via TRPV1; thus, it might be hypothesized that AEA, through the
activation of specific receptors, switches on/off testicular GnRH
signaling, leading to germ cell progression (Figure 1).

However, in mammalian and non-mammalian vertebrates,
CB1 activity is linked to the control of post-meiotic stages (32,
65, 69, 73). In particular, it has been suggested that ECS controls
different steps of spermiogenesis that is the phase of spermatoge-
nesis consisting in the differentiation of SPT in SPZ. In particular,
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Table 1 | Localization of ECS components [both mRNA and protein (Prot)] in testicular somatic and germ cells.

Cell type CB1 CB2 TRPV1 FAAH NAPE-PLD MAGL DAGLα/β Species Reference

Leydig cells mRNA Prot Prot mRNA R. esculenta (68, 69, 72, 79)

Prot M. musculus

Prot R. norvegicus

Sertoli cells mRNA mRNA/Prot mRNA mRNA/Prot mRNA R. esculenta (68, 70–73)

Prot M. musculus

R. norvegicus

ISPG Prot mRNA/Prot mRNA mRNA mRNA mRNA mRNA R. esculenta (65, 69, 73)

mRNA/Prot M. musculus

IISPG mRNA/Prot mRNA/Prot mRNA mRNA mRNA mRNA mRNA R. esculenta (65, 68, 69, 73)

mRNA/Prot mRNA M. musculus

ISCP Prot mRNA/Prot mRNA Prot mRNA mRNA mRNA R. esculenta (65, 68, 69, 73)

mRNA/Prot mRNA mRNA M. musculus

IISPC Prot mRNA/Prot mRNA Prot mRNA mRNA mRNA R. esculenta (65, 73)

mRNA mRNA M. musculus

SPT mRNA/Prot mRNA/Prot mRNA Prot mRNA mRNA mRNA R. esculenta (65, 68, 69, 72, 73)

mRNA mRNA M. musculus

Prot R. norvegicus

SPZ mRNA/Prot mRNA/Prot mRNA/Prot Prot mRNA/Prot mRNA/Prot mRNA/Prot R. esculenta (65, 68, 72, 78, 81,

83, 84)mRNA/Prot Prot Prot Prot mRNA/Prot Prot M. musculus

Prot mRNA/Prot Prot Prot R. norvegicus

mRNA/Prot Prot Prot S. scrofa

mRNA/Prot Prot B. taurus

H. sapiens

FIGURE 1 | Differential expression of GnRH system components after
in vitro incubation of frog testis collected in post-reproductive periods
with AEA or capsaicin (CAP), a selective agonist ofTRPV1 receptor. Since

intracellular AEA also bind TRPV1, the involvement of AEA in the modulation
of testicular GnRH signaling may occur via the selective activation of different
eCB receptors.

post-meiotic haploid round spermatids (rSPT) undergo biochem-
ical and morphological changes becoming elongated cells (eSPT)
and then SPZ. Sperm cells are differentially released from Sertoli
cells by spermiation, a process characterized by species-specific
features (65, 98). In mammals, SPZ undergo further transforma-
tions in the epididymis, which enables SPZ for fertilization (76,
77). These cellular modifications, and in particular some structural
changes observed in SPT (i.e., acrosome development, nuclear

shaping and chromatin condensation), seem to be related to ECS
and in particular to CB1 activity.

A detailed immunolocalization of CB1 has been reported in
rat SPT. CB1 appears in rSPT, around the nucleus, during acro-
some development; the signal is retained in the head of elongating
and condensing SPT, always close to the acrosome region, sug-
gesting a role for CB1 in spermiogenesis, probably in chromatin
packaging and in acrosome and/or cellular shape configuration

Frontiers in Endocrinology | Experimental Endocrinology April 2014 | Volume 5 | Article 54 | 4

http://www.frontiersin.org/Experimental_Endocrinology
http://www.frontiersin.org/Experimental_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bovolin et al. Endocannabinoids and male vertebrate reproduction

(57, 72, 81). In agreement, several data demonstrate that CB1 reg-
ulates acrosome reaction, chromatin condensation, and nuclear
size of SPZ (82, 99). Recent observations demonstrate that CB1 is
involved in chromatin remodeling of SPT. In fact, during spermio-
genesis, as the nucleus elongates and assumes a specie-specific
shape, the chromatin condenses. It is worth noting that chromatin
condensation differentially occurs, depending on the species. In
mammals, chromatin condensation starts in eSPT producing con-
densing and then condensed SPT, which are mature elongated
cells with strongly packaged chromatin (100). Many events char-
acterize these chromatin cyto-architecture changes (101). Early
during spermiogenesis, it is possible to observe the expression
and storage of specific proteins involved in condensation and in
DNA integrity maintenance, such as transition proteins (TNPs)
and protamines (PRMs) (102). Others events concern the fol-
lowing: (i) displacement and degradation of the nucleosome
structure; (ii) histone replacement by TNPs and then by PRMs;
(iii) transcriptional silencing; (iv) DNA repair; and finally, (v)
repackaging of the protaminated chromatin into toroidal struc-
tures (103, 104) [for recent review, see Ref. (94)]. These events
strongly preserve DNA by damage and are involved in mecha-
nism related to sperm maturation. Indeed, it is well known that
inefficient expression or activity of TNPs/PRMs deranges his-
tone displacement and causes production of SPZ with histone
retention, incomplete chromatin condensation, and DNA dam-
age (74, 105, 106). In both humans and rodents, abnormal levels
of sperm DNA damage are associated with lower conception,
implantation, and fecundity rates, and with higher miscarriage
probability (95, 107, 108). In this context, Chioccarelli et al. (74)
showed that Cb1 gene deletion negatively influences chromatin
remodeling in SPT, by reducing either transition protein 2 (Tnp2)
levels or histone displacement. Secondary effects, related to the
inefficient histone displacement (i.e., histone retention, uncon-
densed chromatin, DNA damage, and nuclear size elongation)
have been postulated (22, 74). In agreement, in vivo and in vitro
experiments show that AEA is able to act locally and upregulate
Tnp2 mRNA levels through CB1, via PKC/PKA pathways (17, 74).
Furthermore, in caput epididymis from CB1−/− mice, the per-
centage of SPZ retaining histones as well as the percentage of SPZ
with uncondensed chromatin or with DNA damage, is higher as
compared to normal mice. Interestingly, DNA damage increased
during the epididymal transit, from caput to cauda, suggesting
that CB1 preserve sperm DNA integrity of SPZ during epidydimal
transit (74).

Recently, it has been demonstrated that estradiol, probably
via stimulatory effects on FSH secretion and/or directly via
paracrine actions within the testis, preserve chromatin conden-
sation, and DNA integrity of SPZ, likely by promoting histone
displacement in SPT (99). Indeed, it has been reported that
CB1−/− male mice show low levels of circulating E2, and when
treated with 17β-estradiol, they rescue sperm chromatin qual-
ity by restoring histone content, chromatin packaging, DNA
integrity, and nuclear length of SPZ (22, 99). These results cor-
roborate the intriguing findings that the small nucleus of SPZ,
containing chromatin that did not retain histones, appear fully
condensed and able to preserve DNA from damage. On the
contrary, the longer nucleus of SPZ, containing chromatin that

retained histones, is uncondensed and unable to avoid DNA
damage. The emerging exciting idea is that sperm nuclear dimen-
sions can be a good marker for SPZ chromatin quality useful to
select the SPZ qualitatively suitable for intracytoplasmic sperm
injection (99).
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